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Solutions and critical times for the polydisperse coagulation 
equation when a (x, y ) = A + B  (x + y ) + Cxy 

John L Spouge 
Trinity College, Oxford OX1 3BH, UK 

Received 4 January 1983 

Abstract. This paper gives solutions of the polydisperse Smoluchowski coagulation 
equation 

W X ,  t ) l a r  = t f ( y ,  o f ( x  - Y, r )a(y ,  x - y )  dy -f(x,  0 

f(x,  0) = g(x)  

f ( y ,  r)a(x, Y )  dy, I: Id 
for arbitrary g(x) when the coagulation kernel 

aix, y )  = A  +Bix + y )  + Cxy. 

The solutions are given as recursions and infinite series and are practical for computa- 
tion. For the given kernels we also give the gelation times t ,  at which 

m 

M d t )  = lo x2f(x, t )  dx 

becomes infinite. 

1. Introduction 

The polydisperse Smoluchowski coagulation equation is the partial differential 
equation 

f ( x ,  0) = g (x 1. 

a(x, y )  = A  + B ( x  + y )  + Cxy. 
This paper gives practical solutions of (1) for arbitrary g(x) when 

(2) 

Drake’s (1972) review of coagulation solves some of these cases by Laplace 
transforms but the solutions are not always practical for computation. 

Equation (1) and related equations have been used to model clumping processes 
in astrophysics (Barrow 1981), meteorology (Drake 1972), polymer chemistry (Cohen 
and Benedek 1982), haematology (Pope1 er a1 1975), colloid chemistry (Lushnikov 
1973) and aerosol science (Ramabhadran et a1 1976). 

Equation (1) has the following physical interpretation: consider a fixed volume of 
space containing a large number of randomly moving particles. The particles vary in 
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mass and clump irreversibly (or coagulate) when they meet. f(x, t )  gives the mass 
spectrum at time t ,  i.e. f(x, t )  dx is the average number of particles per unit volume 
having mass x to x +dx. (All averages will be taken over the fixed volume.) g(x) is 
the initial mass spectrum. The volume-average number of coalescences between 
particles of mass x to x +dx and those of mass y to y +dy during the time interval t 
to t +dt  is f(x, r)f(y, t)a(x, y )  dx dy dt. a(x,  y )  is called the coagulation kernel. 
Equation ( l ) ,  a conservation of mass relation, gives df(x, t ) / a t  as the difference of 
two terms (a) and (b). 

(a) The rate of formation of x-masses by coagulation of y- and (x -y)-masses. 
(b) The rate of disappearance of X-masses by coagulation with y-masses. 

In future, we shall suppress dependence on time (e.g. f ( x )  =f(x, t ) )  when the meaning 
is clear. 

The moments of the mass spectrum are 

If all moments are initially finite, the divergence of any moment Mn(t) heralds the 
appearance of an infinite mass (Ziff 1980, Leyvraz and Tschudi 1981). We call this 
phenomenon gelation (borrowing the term from polymer chemistry), and the time 
that gelation first occurs the gelation time t,. We shall assume hereafter that all 
moments are initially finite. 

Equation (1) usually occurs in its monodisperse form 
n - l  OD _- dxn-t  c X~Xn- jUj , ( . - j ) -Xn  1 xju,,, 

dt , = i  i = l  

Xl(0) = 1 xz(0) = x3(0) = * . . = 0. (4) 

The solutions of (1) and (4) are related by 

(S(x) is the Dirac delta function) and (4) is the specialisation of (1) wherein all particles 
are initially of unit mass. 

If ai, = (ij)" in (41, Ernst et a1 (1982), Ziff et a1 (1982) and Ziff (1980) have shown 
t ,  < 03 for w > f. Leyvraz and Tschudi (1981) give t ,  for the kernels (2) when B 2  = AC. 
This paper gives t ,  for all the kernels (2). Ziff and Stell (1980) give post-gelation 
solutions of (4), some of which are easily extended to ( l ) ,  but we shall confine our 
interest to pre-gelation solutions of (1). 

Let us choose units of mass and volume so that Mo(0) =M1(0)  = 1. For t <t,, 
finiteness of the moments yields 

Hence Ml(t) = 1 for t < tg. Hereafter we restrict ourselves to the kernels (2). CL = Mo(t)  
satisfies 

d p / d t = - $ ( A p 2 + 2 B F  + C ) = - $ D ( p ) .  (7) 

Solutions of (71, subject to p(O),= 1, are given in table 1. 
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To derive gelation times of (4) we note that for n = 2, (6) becomes 

dM2/dt = A  + 2BM2 + CM:. (8) 

Substituting g 2  = 1/M2 and 7 = 2t into (8) yields an equation of the form (7). 
When t = 0, gz = 1/M2(0) and when t = tg,  g 2  = 0. These conditions allow us to use 
the solutions of (7) to solve (8) for t,. The results are given in table 2 and are in 
Drake (1972, section 5.4). 

Table 2. Gelation times for a ( x , y ) = A + B ( x + y ) + C x y M l ( r ) ~ 1 , M 2 = M 2 ( 0 ) .  

Cases t ,  

c=o 

C # 0:  A = 0:  B = 0 

: B # O  

: A  + o :  B~ =AC 

: B ~ > A C  

-B * ( B ~ - A c ) ' / ~  
A P t  = 

: B * < A C  

B (AC - B ~ ) ~ / ~  
A' Y =  a = -- 

A 

2. Solutions for r < t ,  

Let us introduce fk(x, t ) ,  k = 1,2 ,3 ,  . . . , functions satisfying 

fib, 0 )  = d x )  f2(x, 0) = f 3 ( x ,  0) = . . . = 0. (9) 

Summing over k = 1 , 2 , 3 , .  . , , shows that cT=l fk(x, t )  satisfies (1). Hence 

fk(x, t )  has a simple physical interpretation: fk(x, t )  dx is the volume-average num- 
ber of particles at time t which have mass x to x +dx and which contain k of the 
initial particles. Equation (9) has a physical interpretation similar to that of equation 
(1). 
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Let us parametrise the time by p, so that 

Assume that 

Equations (14) and the initial conditions in (9) imply 

C l ( X )  = g(x).  (156) 

The recursion (15) forcesfk(x, t )  in (14) to satisfy both (12) and (13) so that f(x, t )  
in (10) must be a solution of (1). 

Spouge (1983a) showed that assumption (12) leads to solutions of equation (4) 
only when the kernel has the form (2); this shows the same is true for the more general 
equation (1). 

Branching process models of aggregation prove the most natural derivation of the 
assumption (12); Spouge (1983b) explores their relation to solutions of equation (1). 
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